NOTE

POLYFLUOROAROMATIC DERIVATIVES OF METAL CARBONYLS III*. THE NATURE OF TWO BY-PRODUCTS OBTAINED FROM REACTIONS BETWEEN $[\pi-C_5H_5Fe(CO)_2]^-$ AND POLYFLUOROAROMATIC COMPOUNDS

M. I. BRUCE

Department of Inorganic Chemistry, The University, Bristol 8 (Great Britain) (Received June 11th, 1968)

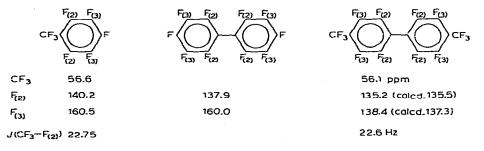
The reaction of the anion $[\pi-C_5H_5Fe(CO)_2]^-$ with monosubstituted perfluoroaromatic compounds has been shown to give a series of complexes of the type p-XC₆F₄Fe(CO)₂(π -C₅H₅) (X = H², CF₃², CO₂Et³, etc.). In general, these reactions proceed to give a single complex, but the reactions of this anion with C_6F_5X (X=F, Cl, Br, or I) gave mixtures of $C_6F_5Fe(CO)_2(\pi-C_5H_5)$ and $p-HC_6F_4Fe(CO)_2(\pi-C_5H_5)^3$. In addition to these two complexes, the reaction with iodopentafluorobenzene gave a third product in $\sim 30\%$ yield, which was not identified³.

This compound has now been identified as bis(pentafluorophenyl)mercury from its analysis and NMR and mass spectra. The source of the mercury is undoubtedly the small particles of mercury left after the preparation of the anion by reaction between $[\pi - C_5H_5Fe(CO)_2]_2$ and sodium amalgam. The mercury compound has been made by reaction of lithium amalgam with bromopentafluorobenzene⁴, and the formation of this compound in 75% yield has been reported⁵ in the thermal reaction between iodopentafluorobenzene and mercury at 300°. The isolation of mercury salts of metal carbonyls from various reactions of the corresponding sodium derivatives, prepared by the sodium amalgam method, has been noted previously⁶. It is notable that $Hg(C_6F_5)_2$ does not appear to be formed in the reactions of $[\pi$ - $C_5H_5Fe(CO)_2$ with hexafluorobenzene or chloro- or bromopentafluorobenzenes.

It is suggested that formation of $Hg(C_6F_5)_2$ may involve a radical reaction after abstraction of iodine, either by the mercury, or alternatively, by traces of amalgam not completely removed by the usual rinsing with more fresh mercury. The formation of decafluorobiphenyl, among other products, in the reaction between nickel carbonyl and C_6F_5I , suggests the easy formation of C_6F_5 radicals from this fluorocarbon⁷.

The mass spectrum of $Hg(C_6F_5)_2$ (see Experimental for full details) shows major peaks corresponding to $C_3F_3^+$, $C_5F_2^+$, $C_5F_3^+$, $C_6F_4^+$, $C_6F_5^+$ (base peak), $C_6F_5^ Hg^+$ and $(C_6F_5)_2Hg^+$. The appropriate metastable peaks indicate that the main processes are fission of a C₆F₅ group from the parent ion, and the elimination of mercury to give $C_6F_5^+$. Subsequent fragmentation of this ion suggests that it has a similar structure to those formed from compounds such as C_6F_5X (X = halogen).

^{*} For Part II see ref. 1.


This is in contrast to the various breakdown patterns shown by transition metal complexes containing C_6F_5 groups⁸. The low abundance of an ion at m/e 386 (C_6F_5 -HgF⁺, 0.2%) indicates that the formation of ions with metal-fluorine bonds does not occur to any appreciable extent. Loss of one fluorine atom from the parent ion, to give $C_{12}F_9Hg^+$, also occurs to a small extent. There is no evidence for the formation of either HgF⁺ or HgF².

There were relatively strong doubly-charged ions which could be assigned to Hg^{2+} , $C_{12}F_9Hg^{2+}$ and $C_{12}F_{10}Hg^{2+}$; the appearance of these ions seems to be characteristic of compounds containing elements of high atomic number.

In another study, the known² complex p-CF₃C₆F₄Fe(CO)₂(π -C₅H₅) was required, and was prepared by the reaction of the anion [π -C₅H₅Fe(CO)₂]⁻ with octafluorotoluene. A second product was isolated in small yield from this reaction, which showed a parent ion at m/e 434 (C₁₄F⁺₁₄) in its mass spectrum, together with many other peaks which could all be assigned to other fluorocarbon fragments. In particular, the peak at m/e 217 (C₇F⁺₇) was very weak (relative intensity, 5%) suggesting that the compound did not readily form this ion. This fact, together with the ¹⁹F NMR spectrum, rule out a formulation C₆F₅CF₂CF₂C₆F₅.

The three resonances in the ¹⁹F NMR spectrum occur at 56.1, 135.2 and 138.4 ppm (relative intensities, 3/2/2). The first, a triplet, can be assigned to the CF₃ group coupled to *ortho*-aromatic fluorines. The other two signals may be assigned to the ring fluorines in a *para*-disubstituted tetrafluorophenyl group. The only compound which is consistent with these data is 4,4'-bis(trifluoromethyl)octafluorobiphenyl.

The observed chemical shifts may be compared to those calculated for this compound on the basis of substituent shielding parameters obtained from C_6F_6 , $CF_3C_6F_5$, and decafluorobiphenyl⁹, as shown below. Unfortunately, the fine structure of the aromatic fluorine resonances could not be resolved adequately for the determination of the appropriate coupling constants.

The formation of this compound can be explained by the dimerisation of heptafluorotolyl radicals. Their abstraction of hydrogen from solvent to form p-CF₃C₆F₄H may also occur, but the lower reactivity of this compound towards the anion makes unlikely the formation of any complex*. Heptafluorotoluene was not looked for, and may have been present.

^{*} It was postulated³ that formation of $p-HC_6F_4Fe(CO)_2(\pi-C_5H_5)$ in the reactions involving C_6F_5X (X = F, Cl, Br or I) occurs via reaction of the anion with pentafluorobenzene formed by a similar hydrogenabstraction process.

J. Organometal. Chem., 14 (1968) 461-464

EXPERIMENTAL

General experimental details were similar to those described before³.

Mass spectra were obtained with an AEI MS9 double-focussing mass spectrometer, operating with 70 eV ionising energy, 8 kV accelerating voltage, and 100 μ A trap current. Samples were admitted via the direct insertion lock, with an ion chamber temperature of ~ 130°.

The ¹⁹F NMR spectrum of the substituted biphenyl was obtained with a Varian Associates HA100 instrument, operating at 94.1 MHz, using the microcell attachment.

Identification of bis(pentafluorophenyl)mercury

The reaction between iodopentafluorobenzene and the anion $[\pi$ -C₅H₅Fe-(CO)₂]⁻ has been described previously³. The white crystals which were present in the reaction product were separated by fractional crystallisation from pentane, followed by fractional sublimations, to give a solid which still contained some iron complex. This was removed by air oxidation of a pentane solution, and sublimation of the evaporated solution gave the pure white Hg(C₆F₅)₂, m.p. 136° (lit.¹⁰ m.p. 142.3°). (Found: C, 27.54; H, 0.41; F, 33.35; I, 0.0; mol. wt. by mass spectrometry, 536. C₁₂F₁₀²⁰²Hg calcd.: C, 26.87; H, 0.0; F, 35.45; I, 0.0%; mol.wt., 536.) Infrared spectrum (cyclohexane): 1640 w, 1512 s, 1509 s(sh), 1481 vs, 1376 m, 1286 w, 1089 m(sh), 1083 m(sh), 1078 m, 1070 m(sh), 1055 w(sh), 970 vs, 960 m, 811 m, 772 w cm⁻¹.

The ¹⁹F NMR spectrum (in tetrahydrofuran solution) showed three resonances at 121.2, 151.8 and 160.6 ppm, relative intensity 2/1/2 (lit.¹¹ 119.7, 150.6, 159.0 ppm, solvent not given).

Mass spectrum (m/e^* , relative intensity, assignment): 69, 0.7, CF_3^+ ; 79, 5.4, C_5F^+ ; 85, 2.2, -; 86, 1.3, $C_4F_2^+$; 93, 9.0, $C_3F_3^+$; 98, 8.6, $C_5F_2^+$; 101, 0.3, Hg^{2+} ; 110, 1.7, $C_6F_2^+$; 117, 38, $C_5F_3^+$; 129, 2.5, $C_6F_3^+$; 136, 0.6, $C_5F_4^+$; 148, 5.6, $C_6F_4^+$; 155, 0.2, $C_5F_5^+$; 167, 100, $C_6F_5^+$; 202, 4, Hg^+ ; 245, 0.1, HgC_2F^+ ; 258.5, 0.1, $C_{12}F_9Hg^{2+}$; 268, 1.7, $C_{12}F_{10}Hg^{2+}$; 369, 17, $C_6F_5Hg^+$; 386, 0.2, $C_6F_5HgF^+$; 498, 0.1, $C_{12}F_8Hg^+$; 517, 0.9, $C_{12}F_9Hg^+$; 536, 21, $C_{12}F_{10}Hg^+$. There were relatively strong metastable peaks at $m/e \sim 254$ (536 \rightarrow 369), 82.0 (167 \rightarrow 117 and 117 \rightarrow 98) and 75.6 (369 \rightarrow 167). The peak at m/e 254 is considerably broadened because of the presence of the multiisotopic mercury.

Formation of 4,4'-bis(trifluoromethyl)octafluorobiphenyl

The reaction between the sodium salt from $[\pi$ -C₅H₅Fe(CO)₂]₂ (3.54 g) and octafluorotoluene (4.7 g) gave the previously reported complex p-CF₃C₆F₄Fe(CO)₂- $(\pi$ -C₅H₅) (1.87 g, 24%), isolated by sublimation. A more volatile compound, which formed square white crystals further up the cooled probe, was separated and resublimed to give 4.4'-bis(trifluoromethyl)octafluorobiphenyl (7 mg), mol.wt., 433.9765 (calcd. for C₁₄F₁₄ 433.9776).

Other ions in the mass spectrum were at $(m/e, \text{ intensity relative to } m/e 434 = 100, assignment): 69, 8, CF_3^+; 93, 4, C_3F_3^+; 117, 2.5, C_5F_3^+; 141, 2, C_7F_3^+; 148, 2, C_6F_4^+;$

^{*} Based on ²⁰²Hg (29.8%). The identification of this compound was first suggested by the presence of the characteristic seven-line mercury isotope pattern in the parent ion.

165, 2, $C_9F_3^+$; 189, 2, $C_{11}F_3^+$; 196, 2, $C_{10}F_4^+$; 203, 2, $C_9F_5^+$; 208, 2, $C_{11}F_4^+$; 217, 5, $C_7F_7^+$; 227, 7, $C_{11}F_5^+$; 234, 2, $C_{10}F_6^+$; 241, 4, $C_9F_7^+$; 246, 5, $C_{11}F_6^+$; 258, 6, $C_{12}F_6^+$; 265, 9, $C_{11}F_7^+$; 272, 2, $C_{10}F_8^+$; 277, 6, $C_{12}F_7^+$; 284, 2, $C_{11}F_8^+$; 289, 2, $C_{13}F_7^+$; 291, 2, $C_{10}F_9^+$; 296, 17, $C_{12}F_8^+$; 315, 12, $C_{12}F_9^+$; 327, 13, $C_{13}F_9^+$; 334, 6, $C_{12}F_{10}^+$; 346, 13, $C_{13}F_{10}^+$; 365, 8, $C_{13}F_{11}^+$; 377, 3, $C_{14}F_{11}^+$; 379, 2, $C_{11}F_{13}^+$?; 384, 47, $C_{13}F_{12}^+$; 398, 4, $C_{11}F_{14}^+$?; 415, 56, $C_{14}F_{13}^+$. Infrared spectrum (cyclohexane): 1660 w, 1599 w, 1503 s, 1484 vs, 1400 vw, 1332 vs(sh), 1325 vs, 1197 m, 1177 m(sh), 1163 vs, 1052 vw, 1003 m, 982 vs, 902 w, 708 vs cm⁻¹.

ACKNOWLEDGEMENT

The author is indebted to the Imperial Smelting Corporation for generous gifts of iodopentafluorobenzene and octafluorotoluene.

REFERENCES

- 1 M. I. BRUCE, J. Organometal. Chem., 10 (1967) 495.
- 2 R. B. KING AND M. B. BISNETTE, J. Organometal. Chem., 2 (1964) 38.
- 3 M. I. BRUCE AND F. G. A. STONE, J. Chem. Soc., A, (1966) 1837.
- 4 P. L. COE, R. STEPHENS AND J. C. TATLOW, J. Chem. Soc., (1962) 3227.
- 5 J. M. BIRCHALL, R. HAZARD, R. N. HASZELDINE AND A. W. WAKALSKI, J. Chem. Soc., C, (1966) 47.
- 6 R. B. KING, J. Inorg. Nucl. Chem., 25 (1963) 1296.
- 7 W. F. BECKERT AND J. U. LOWE, J. Org. Chem., 32 (1967) 1215.
- 8 M. I. BRUCE AND M. A. THOMAS, Org. Mass Spectry, in press.
- 9 M. I. BRUCE, J. Chem. Soc., A, (1968) 1459.
- 10 R. D. CHAMBERS, G. E. COATES, J. G. LIVINGSTONE AND W. K. R. MUSGRAVE, J. Chem. Soc., (1962) 4367.
- 11 D. E. FENTON, D. G. GILLIES, A. G. MASSEY AND E. W. RANDALL, Nature, 201 (1964) 818.
- J. Organometal. Chem., 14 (1968) 461-464